US005903455A

United States Patent [11] Patent Number: 5,903,455
Sharpe, Jr. et al. [45] Date of Patent: May 11, 1999
[54] INTERFACE CONTROLS FOR USE IN A 2713360 6/1995 France .
FIELD DEVICE MANAGEMENT SYSTEM 4210376 A1 10/1992 Germany
WO 9504314 2/1995 WIPO .
[75] Inventors: Richard R. Sharpe, Jr., Lakeville; WO 95009387 4/1995 WIPO
Robert Bruck, Apple Valley; Richard b 32;323?1 501995 WIPO
Wagenknecht, Cottage Grove; Jon D. Al 3/1996 WIPO
Westbrock, Richfield; Craig R.
Tielens, Minneapolis; James W. OTHER PUBLICATIONS
Kieley, Plymouth, all of Minn. . X . .
Fisher, “Ficldvue Instruments: Opening A Window To The
[73] Assignee: Fisher-Rosemount Systems, Inc., Process,” Fisher Conirols International, Inc., pp. 1-8
Austin, Tex. (1994).
Fisher, “Fieldvue Digital Valve Controller DVC5000
. Series,” Fisher Controls International, Inc., Bulletin
(211 Appl. No.: 08/764,057 62.1:DVC5000, pp. 1-12 (Jun. 1994).
[22] Filed: Dec. 12, 19%6 Fisher, “Ficldvue Digital Valve Controller DVC5000 Serics
Remotely Accessible Information,” Fisher Controls Inter-
Related U.S. Application Data national, Inc., Bulletin 62.1:DVC5000(S1), pp. 1-2 (Jun.
[63] Continuation of application No. 08/599,371, Feb. 6, 1996. 1994).
[51] nt. C1° GOSB 9/02 (List continued on next page.)
[52] US.CL 364/188; 364/146 Primary Examiner—Reba 1. Elmore
[58] Field of Search 364/140-148, Assistant Examiner—Thomas E Brown
364/160, 172, 180, 188-193, 131139 Anorney, Agent, or Firm—Marshall, O'Toole, Gerstein,
Murray & Borun
[56] References Cited
[57] ABSTRACT
U.S. PATENT DOCUMENTS
. An interface control for use in a field device management
I’;ﬁgg’ig ?ﬁggg ;’os]nda ct al. 2;56};";4('__?3 system coupled to a set of smart field devices automatically
4.006.464 21977 Lﬁﬁ;ﬂn " 340 3172.5 performs functions related to communication between a
4047003 9 /1977 LaRocca etal . ‘ns ,r‘151‘1.1 device, a database and a user of the management system and
4:096:566 6/1978 Borie et al. o 364200 Tunctions related to interfacing with a vser in a manner
4,195,344 371980 Yamazaki ... o 364/200 which is transparent to the software application running on
4,368,510 1/1983 Anderson e 3647151 the management system. The control monitors a device, or
4,413,314 11/1983 Slater et al. .vovivecsnneccennieennn 3647188 a block or a parameter of a device, displays information
4,443,861 4/1984 Slater 364/500 pertaining to the device, block or parameter to a user,
4,517,637 5/1985 Cassell s 364/138 receives information pertaining to such device, block, or
4,571,676 2/1986 Mantellina et al. wowssirinn 3647200 parameter from a user and the device, automatically updates
(List continued on next page.) the displayed information, and implements changes to the
device block or parameter specified by the user. A timeline
FOREIGN PATENT DOCUMENTS control specifies a time at which past, present or future
configurations of devices, blocks, parameters, or other data
g :gi % ﬁ gﬁggi Eﬁgx %::t % associated with one or more devices is to be displayed.
0 560 226 A2 9/1993 Eunropean Pat. Off. .
2692701 12/1993 France . 46 Claims, 18 Drawing Sheets

5,903,455

Page 2
U.S. PATENT DOCUMENTS 5,465,364 11/1995 TLathrop et al.oooooceoeeeeeneee. 395681
5485400 171996 Warrior et al. ... 364/550

4,586,151 4/1986 Buote 364/513 5,486,998 1/1996 Corso 3647152
4,589,063 5/1986 Shah et al. .oceenniinniiicnenns 364/200 5,497,316 3/1996 Sierk et al. ..oo.ooooooooeeerrreeenneen. 3647140
4,602,343 7/1986 Dougherty o 364/505 5,500,934 3/1996 Austin et al. ... e 3957755
4,628,437 12/1986 Poschmann et al. ... - 3647131 5,586,324 12/1996 Sato et al. w..... e 3957652
4,639,852 1/1987 Motomiya - 364/138 5,613,123 3/1997 Tsang et al. .cereveeeerssecenneeee 3957651
4,641,269 2/1987 Japenga et al. .. w 364/473
4,648,064 3/1987 Moiley ..oveens e 364/900 OTHER PUBLICATIONS
4,663,704 5/1987 Jones et al. 3647188 . . o
4,672,529 6/1987 Kupersmit e 364/130 Fisher, “Fieldvue Digital Transducer DT4000 Remotely
4,680,753 7/1987 Fulton et al. .. 370/85 Accessible Information,” Fisher Controls Imternational,
4,682,158 7/1987 Tio et al. 340/679 Inc., Bulletin 62.1:DT4000(81), pp. 1-2 (Jun. 19%4).
4704,676 11/1987 Flanagen ef . 364/146 Fisher, “Type VL1000 Fieldvue Valve Link,” Fisher Con-
4,774,656 9/1988 Quatse et al. « 3648900 pls International, Inc., Bulletin 62.1:VL.1000, pp. 1-2
4,777,584 1071988 Pogue 364/146 (Fun. 1994).
jﬁzﬁ:g o s - 30/ Fisher, “Ficldvue Digital Transducer Type DT4000,” Fisher
4910658 3/1990 Dudash et al. 3647138 Controls International, Inc., Bulletin 62.1:DT4000, pp.
4910691 3/1990 Skeirik 3647513 1-12 (Jun. 1594).
4,965,742 10/1990 Skeirik 304/513 Fisher, “Type HF100 Fieldvue Hart Filter,” Fisher Controls
4,965,880 101990 Petifjean we 364/468 International, Form 5340, pp. 1-6 (Dec. 1993).
?g?:ﬁ 1;:‘:33; g‘)sﬁ’m et ai [rr— gg:ﬁg: Fisher, “Hart Communicator Manual for Fieldvue Instru-
,095,. agiwara et al. ..o n g
5115511 5/1992 Nilsson et al. 395/800 i[;c;st)sj Fisher—Rosemount, Form 5345, pp. 1-40 (Apr.
Yiatais oo IZ';‘I’J‘:,‘B;HM " Joanss Fisher, “Fieldvue Digital Valve Controller Type DVCS000
5,124,908 6/1992 Broadbent 364/188 Series,” Fisher-Rosemount, Form 5335, pp. 1-38 (Jun.
5,140,677 8/1992 Fleming et al. . 395/159 1995).
5,146,401 9/1992 Bansal et al. ... 364/138 Fisher, “Ficldvue Digital Transducer Type DT4000,” Fish-
5,164,894 11/1992 Cunnmgham-Reld et al .. 364/131 er—Rosemount, Form 5334, Pp- 1-24 (_]']_m. 1995)‘
5,168,441 12/1992 Onarheim et al. - 3647146 Fisher, “Fieldvue ValveLink Series VL2000 Software,” Bul-
5,21)2,961 4/1993 Mills et al. ..ocoiinvciionninnnn 395/159 letin 62.1:VL2000, Fisher Controls Intematiaml, IHC., PP
5,208,744 571993 Kanda 364/162 1-6 (Nov., 1995)
5,233,510 8/1993 Brueckner et al. ...cooweccrrecene 3647131) : . . ,
5,247,450 941993 Clark 364/473 FlShGl', PC-Based Communications Pl'Ogl'ﬂI_[l, P[DL:]Dk
5,251,125 1071993 Karnowski et al. ... 3647189 Software, Product Data Sheet PS-00033, Micro Motion,
5,265,005 11/1993 Schmidt et al. 364/147 Inc., 2 pages (Nov., 1995).
5,282,128 1/1994 Braude . e 364/168 Fisher, “Cornerstone Base Station,” Model 2500H1, Product
5289365 2/1994 Caldwell of al. - 364/138 Tiata Sheet PDS 4693, Fisher—Rosemount Systems, Inc., pp.
5,307,491 471994 Feriozi et al. 395/681 1-8 (Sep., 1995).
g’gﬁ’g? 2;1994 Sismilich ... e 305/161 ISP, “InterOperable Systems Project (ISP) Device Descrip-
311, /1994 Barrett o 364/550 ; : s Trojec,
5317723 571994 Heap o al . 395/500 tion Services (DDS) User’s Guide,” ISP-94-110, Rev. 1.0,
5,319,751 6/1994 Garney 395/447 >4 pages (Jun. 1994).
5,323,328 6/1994 Tanaka 364/492 ISP, “InterOperable Systems Project Fieldbus Specification
5,365,423 11/1994 Chand 364/140 Device Description Language,” ISP Foundation, pp. 1-101
5,371,805 12/1994 Bristol 395/800 (Dec. 1993),
5,377,315 12/1994 Legeett - 395/140 1 eeney, “Instrument Remotely Verifies Valve’s Stem Posi-
5,384,910 171995 Torres 395/156 tion,” Chemical Processing, Form 8238, pp. 1-2 (Dec.
5,392,389 2/1995 Fleming .. weeerveenseene 3957159 1993)
g:iggﬁ%g iﬁggg gzlglztiz Frank et al. g?gggg Office Action dated Mar. 26, 1998 issued in U.S. Application
5408603 4/1995 Van de Lavoir ef al. ... 3950161 No. 08/599,371,
5,412,643 5/1995 Kogure 370724 PCT International Preliminary Examination Report, mailed
5420977 5/1995 Sztipanovits et al. ... 395/160 Mar. 31, 1998 in PCT Aplication No. PCT/US97/01534.
5,426,732 6/1995 Boies et al. . - 395/161 PCT International Search Report mailed Jun. 20, 1997, 4
5,428,734 6/1995 Haynes et al. ... 395/159 pe>.
5,437,007 7/1995 Bailey et al. ... w 395/159 . :
5444642 8/1995 Monigomery ool " 3645550 PCT International Search Report mailed Jun. 30, 1997, 4
5452,201 971995 Pieronek ef al. . .. 3647188 PEB- .]] . .
5.450.825 10/1995 Anderson et al. 3057133 Amold, et al., “Object—Oriented Design Environments in
5,459,867 10/1995 Adams et al. ... w 305/651 Process Control,” 8131 Advance in Instrumentation and
5,461,710 10/1995 Bloomfield et al.ccoriirnenne 395/161 Control 44(1989), Part 3.

U.S. Patent May 11, 1999 Sheet 1 of 18 5,903,455

FIELD MANAGEMENT SOLUTIONS SYSTEM

304~

r Display | Memory
Operating 36 ™38

31— System [e——»

and CPU FMS]

Database [[>40
32— Keyboard
AXB AR
|

L2
v

y /48 (°

Fieldbus
Modem Hand Held Ethernet FMS

_\ Interface l Communicator
F y
45 44 Ye L !

42

12}_ L

i e
: HART “/

Device

. 4
.
O
n

HART |
Device

Fieldbus le
™ Device

\

Hand Held HART -
Communicator| | Device

46

/20

/24
! Conventional |,
' Device

FIG. 1

U.S. Patent May 11, 1999 Sheet 2 of 18 5,903,455
10
—50
31 \ FMS Applications
: 56 | Core -52
Printer)'I- _ ~
Currentfy. .
r— {Add-on [1-54
Display 49
, /
/ —| Windows
30 .
———» Operating f«
Keyboard System
) ‘f‘1 60 82 64
32 v r \ |
34 FMS
65" Interfacefe—s{ DCI Database [«—» ODBC
/- Interface
58 -
8¢
v v
OLE Objects OLE Objects
) 470
68— Device < » Database
Server Server
72
& 4 y
» DDS |¢&—— Y
s : F 3
Smart Device 5 s A 4 NS FMS
ccmm_ evice
74— Interface Description Database J’ Database
Library Interface
\ I
___________ I 76 N\go \
_Smart Devices <-— 12 40
FIG. 2

5,903,455

Sheet 3 of 18

May 11, 1999

U.S. Patent

(byuod pawoN)

X
1 60T LIVH 3
(550
-mchi
s 34DH,
| 231A3Q
T 4 FF T 7 TGN SuTT
SSoJppY 2018,
UonDIS (abuoyoaayu)
SWoN (. so2a0) §%3.ppy UONDIS
Btyjuos r 3 3 %
niH
w3 «NiH.
PUION NETIUEYS O (od)
BoL3poig| BoI T8vH SABTUR 651 a3Aag . | SN 1104
. :LDCHO.I *
boy sd0)g (ai 92142Q) C 3pONIaN)
o1 30181 .Q1321A33, § 9UWIDN SPON di/ldDL
Boj joaisA
s ﬁl n _ru_m :nQ ﬁ 6oy wu._>mou 19N
PSLUDN, Boy jo1sAyg, ﬁ.mc] S21A3(Q], i « 49N,

€ "'PId

(o)

Y005

U.S. Patent May 11, 1999 Sheet 4 of 18 5,903,455

| "Param® ‘Unit” ‘Oatabase” |[*Refresh”
L J
Unit Databagse- RefreshRe-
(Parometers) Relotton) Parcmeters) lations
Param Name Name '
(Datcbuse—)
Unit name Parameter —
Refresh
Name |
m
T
7T @
. s
(UnitReIct:on) (RefreshRelatiorg I
o)
)
3 o
“Units” ‘Members” "Left “ "Right” (o
Relotion-) Relc*uon) RElCItIOﬂ) Relution-)
Items item ltems
] 'Index Inde x llndex Index !
L"lndexedltemArmy'l"E num® " PreEEI it
(ItemAery) Enumeration Methods
Values
Enum Value Index
Enumeration Method
Value
"Actions”

(Method)

FIG. 4A

U.S. Patent May 11, 1999 Sheet 5 of 18 5,903,455

Block Named
(Block)

‘ItemArray” l"Col lection® [‘Menu” ‘Method"
.. J x —_—
|(ItemArrays) (Collectiona Q/Ienus) Methods) I
' [temArr Collection Menu Method
Name Name Name Ngme
— -——
(ltemAWCollection) (Mme— Method
Elernent” ‘Member® "Menu
(ItemArray- Collection -) Menu-
ql ltems ltems tems “PreE dit”
b Element Member Index !
i Lﬂu_m__eb r Nome O
i Methods <
- &
|
L Method
(Method) o
Vg
1
|
(Vc:riublePa rameter) (RecordPurumeterD
“PostEdit” ¢ Member”
Methods (Membe r‘sj I
Index %E

Code"”

(ResponseCodes)

Response Code
Value

FIG. 4R (ReSponseCode)

U.S. Patent May 11, 1999 Sheet 6 of 18 5,903,455

“EditDisplay” "WAO"
(Ed it Dis;I ays) \f\@g@gge
Edit Display Write AsOne
! Name Name
———O(Edit Dispiay)
Yy

'PostEdit” |Display” "Edit”

EditDispia)(EditDis -)

Index Imgg& Index

o
<
. (Method) ﬂv v
o WriteAsOne
w P » |\ Relation
= - “Member”
O L J i J
N (Relctionltems)
! (ArrayPara meteQ index
‘Elerment”
CEIe ments)
! Element
Number

FIG. 4C

U.S. Patent May 11, 1999 Sheet 7 of 18 5,903,455

58
3q0 392 j §04
|
\ | f /
Master : Device Block
Control I Control Control
I
[
|
Mast -
Ti?{:’ee_r | |Parameter Time
Line |l | Control Line
Control | Contro[
! /
{
301 306 308

FIG. 5

U.S. Patent May 11, 1999 Sheet 8 of 18 5,903,455

[Control Initialization]

A 4

Define Control Type 310

Y

Define User Interface Attributes —+———311

|

Define Refreshing Rate +—312
Connect To Root Object

FIG. 6

U.S. Patent May 11, 1999

Sheet 9 of 18

5,903,455

Control Operation

A 4

Connect To
OLE Object

l

Initialize/Establish User
Interface on Display

4—313

——314

essage from
Application, User
Interface or OLE
Block?

No

FIG. 7

315

U.S. Patent May 11,1999 Sheet 10 of 18 5,903,455

Interpret Message +—316

Read Change Change
OLE Parameter/] User

Object
5 cJt 5 /Root Value lf\terface
e
318 / /
350 322

U

FIG. 8

U.S. Patent May 11,1999 Sheet 11 of 18 5,903,455

(" Read OLE
Object Data 324

From OLE
_ Obiect /

Send Message o375
Retrieve Object /
Properties From

OLE Object

328

Read
Type?

Blocking

330

, Wait for /
Non'BIUCkmg OLE ObjeCt NOﬂ-BlOCking

Non-Periodic Periodic

Data From
OLE Block

"

Store In Control Cache

334

e

Change User
Interface if Necessary

I

Notify Application if
Necessary

Return]

FIG. 9

U.S. Patent May 11,1999 Sheet 12 of 18 5,903,455
Change
Parameter/Root 338
i Value

340 | : /

5 Parameter

or Root Value N U !:;ﬁ:? 6
Writeable? 0 seriapplication |
L—» That Parameter | 342
QOr Root Value
Not Writable FIG. 10
Yes L
344
Notify
User/Apolication 346
Root Value An No-» P;.rr;?rt:tl::vor 4
Aocepted Root Value Not
/ Wiritable
L >
Yes 348 350 L 4
T e (Retm |

ait For
Send Change Retum
Message To]

Message
Parameter or Root 352
Object
Yes Yes With
Successful? Condition ' 358
y [/
Get Response Code
354 T 356
v [/ 4 !
' Indicate To Indicate To
Indicate To Application/User Application/User
Application/User That Change Not That Change Made
That Change Made Made And Reason And Response
for Rejection Cods
=
360

U.S. Patent

May 11,1999 Sheet 13 of 18 5,903,455
362
Change User /
Display
interface
v
Change User 364
Display | —"
interface
Attributes
Refresh _,/3 66
Display

I
L Return]

FIG. Il

U.S. Patent May 11, 1999

Sheet 14 of 18 5,903,455

2
. >70 372

/

yd

Check to Determine
If User Action

| _No— Ignore User

Meaningful

|
Yes

v

Action

Interpret Message

Parameter/ User

Change Change

Root Value Interface

——378

376

UG

FIG.

12

U.S. Patent May 11,1999 Sheet 15 of 18 5,903,455
Interpret Message +—380
Change Read
Message| Retumn
7y 38 2
—No Is Data

386

Changed?

Yes

!

Store In Control Cache

hange of User
Display interface
Needed?

No

Yes—

Change User

. +——390
Display Interface

392

Notify
Application?

No

Yes—m

394
<

>

Send Application
Message

FIG. I3

Sheet 16 of 18 5,903,455

U.S. Patent May 11, 1999
400
P
402
$1181 00 S 3044 00
FIG. |14
Application .
_ 406

Labe! Text |Edit Text

Pressure [15.55

Temperature| 100. 2

Units Text -

PSI —-—408
DeqC ~——410

Mode |Linear

Ol -i— 412

Logarithmic
Linear
Exponential
Square Root
Other

FIG. IS

U.S. Patent May 11,1999 Sheet 17 of 18 5,903,455
414
Input
Block
416
Output/
Block
FIG. |6
420 422
f [
. / I /426 '
% PAST F;
"\ 12/10/951 118 a7 CRESENT
424 [12/10/95]12:30 454
1/15/96[16:40
430
TEMP | 40 | °C =~ TEMP [30 | °C=—440
32

FIG. I7

U.S. Patent May 11,1999 Sheet 18 of 18 5,903,455

INITIALIZE THE 450
STATE (S}OF THE | ——
BLOCK TO NUL.

v

SET TIME OF STATE
{S}TOTHE VEWTIME.] _—— 452

454

DOES THE STATE (S}
INCLUDE VALUES FOR ALL
PARAMETERS IN THE

BLOCK? 456
/-

THE STATE OF THE
BLOCK AT THE VIEWTIME
IS {8}.

\\ IDENTIFY THE NEXT
r PARAMETER P IN

SEARCH THE TRANSACTION DATABASE
IN REVERSE-CHRONOLOGICAL ORDER | .—460
BEGINNING AT THE VIEWTIME TO FIND

THE LATEST CHANGE TR AT OR BEFORE

THE VIEWTIME.

l

ADD P, WITH THE VALUE ,/46 2
OF PSETBY THE -
CHANGE TR, TO {S}.

FIG. |8

5,903,455

1

INTERFACE CONTROLS FOR USE IN A
FIELD DEVICE MANAGEMENT SYSTEM

RELATED APPLICATION

This application is a continuation of U.8. patent applica-
tion Ser. No. 08/599,371, entitled “System and Method for
Managing a Transaction Database of Records of Changes to
Field Device Configurations,” filed Feb. 6, 1996.

TECHNICAL FIELD

The present invention relates generally to management
systems having applications that manage “smart” field
devices within a process or a plant and, more particularly, to
automatic controls used by such management systems which
control functions related to interfacing between an
application, a user, a database, and smart field devices within
4 process.

BACKGROUND ART

Typically, process plants (such as chemical refinery plants
and drug manufacturing plants, for example) include many
field devices which control and measure parameters within
the process. Each field device may be a control device (such
as a flow valve controller), a measurement device (such as
a temperature gauge, pressure gauge, low meter, etc.) and/or
any other device that affects or determines a value associated
with a process. Until the past decade or so, field devices have
typically been rather simple devices which were controlled
either manually or electronically and which produce output
readings either electronically or on a gauge connected to the
device. However, these devices typically only provide lim-
ited information to a controller such as analog signals
pertaining to the readings or measurements made by these
devices.

More recently, so called “smart” field devices have been
developed. Smart field devices are capable of communicat-
ing with a process controller and/or a management system
associated with the device. Typical smart field devices are
capable of transmitting an analog signal indicative of the
value associated with the device, for example, a measure-
ment value, and of storing and also digitally transmitting
detailed device--specific information, including calibration,
configuration, diagnostic, maintenance and/or process infor-
mation. Some smart devices may, for example, store and
transmit the units in which the device is measuring, the
maximum ranges of the device, whether the device is
operating correctly, troubleshooting information about the
device, how and when to calibrate the device, ctc.
Furthermore, a smart field device may be able to perform
operations on itself, such as self-tests and self-calibration
routines. Exemplary smart devices include devices which
follow the HART (Highway Addressable Remote
Transducer) protocol (HART devices), the Fieldbus protocol
(Fieldbus devices), the Modbus protocol, and the DE pro-
tocol. However, other smart device protocols may exist or be
developed in the future to support different types of smart
devices.

Currently, every conventional and smart device is capable
of performing one or more specific input and/or output
functions with respect to a process. An input function is any
function which measures or reads a value associated with a
process, such as the function performed by a temperature or
pressure measurement device. An output function is any
function that changes something within a process, such as
the functions performed by a valve or flow controller.

10

15

20

25

30

35

40

45

50

55

60

65

2

Furthermore, some smart devices, such as Fieldbus devices,
can perform control functions which are functions associ-
ated with the control of a process. Each input, output and
control sub-function performed by a device is referred to as
a “blocle™ By definition, therefore, each device includes at
least one and maybe more blocks. Fieldbus devices usnally
include multiple blocks (¢.g., one or more input, output, and
control blocks), and, while HART devices do not include
blocks per se, the contents of a HART device may be
conceptualized as constituting one and only one block.

Each block and, therefore, each device includes one or
more “parameters.” A parameter is an attribute of a block
which characterizes, affects or is somehow otherwise related
to the block. Parameters may include, for example, the type
of the block, the maximum operating or measurement range
of a block, the mode of a block, the value of a block
measurement, etc.

Likewise, each parameter has one or more properties
associated therewith, and each of those properties defines or
describes the information within the parameter. For
example, the temperature parameter of a temperature mea-
suring device has a label property which stores the name of
the parameter (¢.g., “temperature™), a value property which
stores the value of the parameter (¢.g., the actual measured
temperature), and a units property which stores the units in
which the temperature PATENT 06005/33102 value is
expressed (€.g., degrees centigrade or degrees fahrenheit). A
device or a block configuration comprises a set of values for
cach of the properties of each of the parameters associated
with a device or a block.

As noted above, smart field devices are developed so that
communication therewith must be performed in one of
several available protocols (the HART and Fieldbus
protocols, for example). These protocols allow device manu-
facturers to provide device-specific types of information for
a device and, of course, the particular types of information
are different for each type of smart field device.
Consequently, these protocols are complex and difficult to
use in device programming. More particularly, some of these
protocols do not provide a completely consistent method for
communicating with every smart device conforming thereto.
Instead, these protocols, such as the HART protocol, merely
provide a way for device manufactures to specify what
information is available from each smart field device and
how to retrieve that information.

Communication with smart devices has been simplified to
some extent with the advent of device description languages
(DDL) and device descriptions which are provided by the
manufacturers of smart ficld devices. A DDL is a human-
readable langnage that provides a protocol for describing the
data available from a smart device, the meaning of the data
associated with the smart device and retrieved therefrom, the
methods available for implementation of the smart device,
the format for communicating with the smart device to
obtain data, user interface information about the device such
as edit displays and menus, and information for handling or
interpreting other information pertaining to a smart device.

DIDIL source files comprise human-readable text written
by device developers. These files specify all the information
available about a device between the device arid a bus or a
host to which the device is connected. Basically, in devel-
oping a DDL source file for a device, a developer uses the
DDL language to describe core or essential parameter char-
acteristics of the device as well as to provide group-specific,
and vendor-specific definitions relating to each block,
parameter, and special feature of a smart device.

5,903,455

3

A DDL source file is compiled into a binary format to
produce a machine-readable file known as a device descrip-
tion (DD) which can be provided to a user by the device
manufacturer or a third-party developer to be stored in a host
system, such as a management system. In some cases, for
example in Fieldbus devices, DDL source files may be
stored in a smart device and transferred from the smart
device to a host system. When the host system receives a DD
object file for a smart device, it can decode and interpret the
DD to derive a complete description of the interface with the
device.

DS is a general software system developed and provided
by Fisher-Rosemount Systems, Inc. and/or Rosemount, Inc.
for automatically decoding and interpreting the DDYs of
smart devices. More particularly, DDS is a library of rou-
tines which, when called by a host, interprets the DD of a
smart device to provide the host with information pertaining
to the smart device, including information pertaining to: (1)
the setup and configuration of the smart device; (2) com-
munijcation with the smart device; (3) user interfaces; and
(4) methods available for use in conjunction with the smart
device. One extremely useful application of DDS is in
providing a consistent interface between a host system and
one or more smart devices having associated DDL source
files (and corresponding DD object files).

Although DDS, DDL and DD’s are generally known in
the art, more information pertaining to the specific function
and format of DDL’s, and of Fieldbus DDL in particular, can
be found in the InterOperable Systems Project Foundation’s
manual entitled “InterOperable Systems Project Fieldbus
Specification Device Description Language” (1993). A simi-
lar document pertaining to the HART DDL is provided by
the HART foundation.

A management system is a system which interacts with
one or more smart field devices to read any of the device,
block, parameter, variable, or configuration information
associated with those devices. Typically, 2 management
system comprises a personal computer having appropriate
communication ports which allow it to interconnect to,
communicate with, and reconfigure a smart device. Man-
agement systems may be on-line, that is, have a hard-wired
or other permanent connection with a smart device, or may
be portable and capable of being periodically connected to
a smart device to reconfigure that smart device.

Management systems typically perform a wide variety of
functions with respect to smart devices within a system. For
example, management systems may be used to provide users
with information (¢.g., values of variables or parameters)
pertaining to the state of a process and to each of the smart
field devices associated with or connected to the process.
Management systems may also be used to enable a user to
meonitor a process and control the process by reconfiguring
smart devices within the process as necessary.

The software routines which are used to perform func-
tions within a management system using features provided
by the system are typically referred to as applications.
Typically, management systems implement applications pro-
vided by individual smart device manufacturers to imple-
ment changes on, and read data from, a particular smart
device. As a result, various applications within a manage-
ment system often do not share a common or consistent
interface, and the transition from one application to another
is therefore cumbersome and time-consuming. Further,
smart device configuration data, configuration logs, and
smart device diagnostic data created and stored by different
applications are decentralized and cannot be cross-

10

15

20

25

30

35

40

45

50

55

60

65

4

referenced because this data may be stored in diverse
formats, in different databases and, in some cases, in pro-
prictary formats. Consequently, tasks that could be common
to each device within a system must be duplicated in
separate applications.

A management system which implements such separately
developed applications typically has no way to view infor-
mation pertaining to all the smart devices in a plant or a
process simultancously because the applications for each
device must be run separately. Furthermore, it is difficult for
users to write applications that provide a comprehensive
view of data pertaining to multiple, different devices in a
process because users typically do not have a great famil-
iarity with DDS or with the DDL and DD’s associated with
each of the devices within a process. Even if a user does
have such familiarity, such applications are time-consuming
and expensive to develop and must be updated each time a
new smart device is added to the system.

Another cumbersome aspect of developing applications
for management systems is programming the application to
perform the numercus tasks relating to and necessary for
communication between a user and each smart device within
a system. A developer not only must be attentive to details
involving how to communicate with each separate device,
but that developer must also pay particular attention to how
information is presented to a user via, for example, a display.
This task is made more difficult because typical applications
do not use consistent user interface protocols. Instead each
of the interface functions requires much programming time
and effort, which must be repeated each time a new smart
device is added to the system.

Still further, applications typically allow a user to view a
current configuration of a device, block, or parameter within
a process, but those applications do not allow the user to
view past configurations or to display multiple configura-
tions simultaneously to compare such configurations.

SUMMARY OF THE INVENTION

This invention is related to interface controls for use in a
management system capable of being coupled to one or
more smart field devices. The interface controls perform
consistent communication and interfacing functions
between an application, a user interface and multiple field
devices coupled to the system so that no new programming
is necessary to communicate with and display information
pertaining to newly added smart devices. The interface
controls may use a communication network which relies on
a hierarchy of information related to one or more DDL’s
associated with one or more smart devices connected to the
system. The communication network uses this hierarchy to
call, access information from, and communicate with a DDS
associated with the one or more categorized DIYs, smart
devices connected within a system, and/or a database asso-
ciated with the system.

Controls according to the present invention use the com-
munication network to perform functions related to com-
munication between a device or a database and a user in a
manner which is transparent to applications running on the
management system. Preferably, such controls monitor a
device, block, or parameter; display information pertaining
to the device, block or parameter to a user; receive infor-
mation pertaining to such device, block, or parameter from
a user; automatically update the display in response to
changes to the device, block or parameter; and/or implement
changes specified by the user or the application, all in a
continuous or semi-continuous manner.

5,903,455

5

Preferably, a control is also provided to display historical
information pertaining to a device, block, parameter, or any
other construct associated with one or more devices in a
system. Particularly, a timeline control can be used to
specify past, present and future times for which configura-
tions of devices, blocks, parameters, or other data associated
with devices can be displayed. Timeline controls may also
be used to display multiple configurations simultaneously.

Using such controls, an application for a management
system can be designed even by an application designer who
has no knowledge of the steps necessary to perform these
communication tasks, the particular kinds of devices that are
available to, or are attached to the system, or the different
protocols associated with each of the smart devices com-
nected to the system.

BRIEF DESCRIFTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating the interconnections
between a process, a distributed control system and a
management system,

FIG. 2 is a block diagram of the management system of
FIG. 1 having user interface controls which operate accord-
ing to the present invention;

FIG. 3 is an upper hierarchy of object information used by
a device communication network according to the present
invention;

FIGS. 4A—4(C are a lower hicrarchy of object information
used by a device communication network according to the
present invention;

FIG. 5 illustrates the interface control block of FIG. 2;

FIG. 6 is a flowchart illustrating the initialization steps
associated with a control constructed according to the
present invention;

FIGS. 7-13 arc Hlowcharts illustrating the operation of
controls according to the present invention;

FIG. 14 is a screen display which can be generated by a
set of device controls according to the present invention;

FIG. 15 is a screen display which can be generated by a
set of parameter controls according to the present invention;

FIG. 16 is a screen display which can be generated by a
set of block controls according to the present invention,

FIG. 17 is a screen display which can be generated by a
set of timeline and parameter controls according to the
present invention; and

FIG. 18 is a flowchart illustrating programming for recon-
structing an expected device state from a transaction data-
base.

DETAILED} DESCRIPTION

FIG. 1 illustrates a management system 10, referred to
hereinafter as a Field Management Solutions system (an
FMS system), interconnected with a process 12, a distrib-
uted control system (IDCS) 14 which controls the process 12,
and a further management system such as another FMS
system 15. The process 12 may comprise any desired type of
process, such as a manufacturing or refinery, process, etc.,
and is illustrated as including four smart field devices,
including three HART devices 16, 18 and 20 and one
Fieldbus device 22, and a conventional (ie., non-smart)
device 24, The devices 16, 18, 20, 22 and 24 are controlled
in any desired manner by the DCS 14

Generally, the FMS system 10 is a PC-based software tool
that includes applications which perform field-device man-
agement tasks. The FMS system 10 integrates device man-

10

15

20

25

30

35

40

45

50

55

60

65

6

agement for each of the devices within the process 12 by
helping users to, for example, configure, calibrate, monitor
and troubleshoot any and all of the smart field devices
associated with the process 12,

The FMS system 10, which may comprise any type of
computer- or microprocessor-based system, may include a
display 30, a printer 31, a keyboard 32 and a mouse 34
connected to an operating system and CPU 36. A memory 38
having an FMS database 40 is coupled to the operating
system and CPU 36. The memory 38, including the FMS
database 40, stores software and data used by the FMS
system 10 in performing tasks related to displaying infor-
mation to a user via the display 30 or the printer 31 and
communicating with the smart devices 16, 18, 20 and 22. In
addition, the FMS database 40 stores device-related infor-
mation which is not available from the smart devices, for
example, information pertaining to past configurations of the
devices, information pertaining to off-line devices, such as
off-line smart devices and conventional devices, and infor-
mation pertaining to service notes including when the next
service is needed; who performed service procedures; any
favored replacement devices, etc. Data pertaining to off-line
smart devices may be stored within the database 40 in a
format identical to the format in which that data is actally
stored within the off-line devices so that, to the FMS system
10, off-line devices appear to be available through the
database 40 in the same way they would be available if those
devices were online.

The smart devices 16 and 18 are on-line devices which are
connected to the FMS system via a communication line 42
and a modem 44. The smart device 22 is an on-line device
which is conoected to the FMS system via a Fieldbus
interface 45. The smart device 20 is an off-line device which
is not permanently connected to the FMS system 10.
However, the smart device 20 may communicate with the
FMS system 10 via a hand--held communicator and/or
secondary (laptop) FMS 46 which may be periodically
connected to the device 20 and/or any of the other smart
devices to read data from, and write data to, the device 20
and/or the other smart devices. Thereafter, the hand-held
communicator and/or secondary FMS 46 may be connected
to the FMS system 10 to upload data pertaining to the smart
device 20 and/or any other smart devices to which it was
attached and store such data in the FMS database 40.

If desired, the operating system and CPU 36 of the FMS
system can be connected through, for example, an ethernet
communication link 48 and/or other network link to the DCS
14 and other FMS systems, for example, the other FMS
system 15.

FIG. 2 illustrates the interconnections between various
component parts of the FMS system 10, including hardware
and software components, and will be used to describe how
the various software components stored in the memory 38 of
the FMS system 10 interact with each other, with the display
30, the printer 31, the keyboard 32, the mouse 34, the FMS
database 40 and the smart devices within the process 12. It
is understood that the software components of the FMS
system 10 are stored in the memory 38 and are run on the
operating system and CPU 36.

The FMS system 10 preferably operates in a Microsoft
Windows environment (such as a Windows 95™
environment) and, therefore, includes a standard Windows
operating system 49, which is used to display data and
information on the display 30 and the printer 31 and to
retrieve data and information from the keyboard 32 and the
mouse 34. Thus, information provided to, or retrieved from,

5,903,455

7

the Windows operating system 49 is preferably provided in
a standard Windows call format of any desired type, as is
known to those skilled in the art. However, the FMS system
10 could be implemented according to the present invention
using any other desired Windows-based or non-Windows-
based interface format (whether or not a graphical user
interface) including, for example, Maclntosh, Xwindows or
IBM DOS formats.

The FMS system 10 includes a set of FMS applications S0
comprising core applications 52 and add-on applications 54.
The core applications 52 are essentially programs written by
the FMS system provider to perform predetermined and
frequently used operations. The add-on applications are
applications which are developed by a user or a third-party
developer and imported to the FMS system 10 to perform
customized functions.

As used hereinafter, an application refers to any software
routine implemented by the FMS system 10 which displays
to a user information pertaining to or about the process 12
or one or more devices, blocks, parameters, or other infor-
mation associated with the devices connected to, or associ-
ated with, the FMS system 10, and/or which allows a user to
reconfigure one or more of the devices associated with or
connected to the FMS system 10. The information used by
an application typically is either stored in, or developed by,
the smart devices within the process 12, or is stored in the
FMS database 40.

Thus, for example, the FMS system 10 may include core
or other applications which allow a user to interact with the
data within the FMS database 40 and/or the smart devices
within the process 12 to view the present state of one or more
of the devices within the process 12, to change the configu-
ration of one or more of the smart devices within the process
12, to view multiple devices in a simultaneous or sequential
manner, to perform common smart device control and
configuration functions, to run browsers that locate devices
on the network, to monitor the status of devices and generate
alarm lists, and to implement device calibration and testing
routings.

During operation of the FMS system 10, a user selects one
or more of the applications for execution. The selected
application is identified in FIG. 2 as the current application
or applications 56. Because multiple applications may be
executed simultaneously by the FMS system 10, there may
be multiple current applications 56. Any current application
56 may interface directly with the Windows operating
system 49, an interface block 58, a digital control interface
(DCI) 60 and an FMS database interface 62. If desired, the
current application 56 can also interface with an Open
DataBase Connectivity (ODBC) block 64 (a well-known
Microsoft database application interface (API) system that
enables communication with nearly all databases) and a
server network 65. For many applications, however, such
connections are not necessary or desirable. Furthermore, any
current application 56 may indirectly interface with the
Windows operating system 49, the smart devices within the
process 12, and the database 40 via the interface block 58.

The interface block 58 is essentially a software package
having, for example, specifically configured Windows cus-
tom controls, OCX controls or VBX controls, which auto-
matically perform functions relating to the communication
of particular, frequently used information between a current
application 56, the smart devices within the process 12, the
database 40, and a user interface 65 comprising the Win-
dows operating system 49, the display 30, the printer 31, the
keyboard 32, and the mouse 34. The interface block 58 can

10

15

20

25

30

35

40

45

50

55

60

65

8

be used by a current application 56 to perform these inter-
facing functions without the application designer knowing
the specifics of the protocols involved therewith. As a result,
the interface block 58 enables an application to be designed
more easily and provides a consistent user interface.

Preferably, current application(s) 56 and the interface
block 58 interface and communicate with the smart devices
within the process 12, other FMS systems or distributed
control systems and/or the database 40 through the DCI 60
and a server network 66 comprising servers 68 and 70.
While typically the server network 66 will be located in, and
associated with, the FMS system 10, the dotted line between
the DCI 60 and the servers 68 and 70 in FIG. 2 indicates that
the DCI 60 can alse access server networks of other FMS
systems through, for example, the ethernet connection illus-
trated in FIG. 1.

Essentially, the DCT 60 is a convenience layer comprising
a library of routines which perform functions necessary for
communicating with, and retrieving data from, and perform-
ing other functions pertaining to the database 40, the smart
devices associated with the process 12 and/or other FMS
systems. In operation, the DCI 60 converts commands and
messages sent from the current application 56 and the
interface block 58 into a format recognized and used by
server network 66 and, likewise, converts data provided by
the server network 66 into a form recognized and used by the
current application 56 and the interface block 58.

‘While the DCI 60 can use any desired protocol to perform
these commumnication functions, the DCI 60 preferably uses
an object-oriented protocol and, most preferably, uses an
object linking and embedding protocol such as the Object
Linking and Embedding (OLE) protocol developed and
documented by MicroSoft, Inc. The MicroSoft OLE (2.0)
protocol is used in the MicroSoft Windows 95™ operating
system and is well-known in the art.

Generally, an object-oriented protocol is a programming
paradigm which models the world as a collection of self-
contained objects that interact by sending messages. Objects
include data (a state) and methods {algorithms) that can be
performed on the data. In addition, objects are related to one
another through an interface connection and may commu-
nicate with other objects in the hierarchy through messages.
When an object receives a message, it responds by using its
own methods which are responsible for processing the data
in that object and sending messages to other objects to
perform specific tasks and possibly return appropriate
results.

Because the DCI 60 communicates with the server net-
work 66 through an OLE hierarchy, the DCI uses standard
OLE procedures or calls relating to reading and writing
values of OLE objects, enumerating a set of enumerated
values in an OLE object, getting and setting properties in
OLE objects, calling and implementing methods of OLE
objects and retrieving property data stored in the OLE
collection objects in conjunction with OLE Item methods (a
particular type of OLE method). However, other OLE pro-
cedures can be implemented by the DCI 60 on OLE objects
to communicate with the server nctwork 66,

As described in more detail below, the particular OLE
hierarchy which is preferably used by the FMS system 10 is
an OLE object hierarchy which has been developed to
categorize all of the different types of information and the
interrelationships between the different types of information
available for, or used by, each of the different DDL’s
associated with each of the DID's which, in turn, are asso-
ciated with the devices within the process 12 being serviced

5,903,455

9

by the FMS system 10. This determined hierarchy defines a
set of OLE objects, cach of which stores a particular set of
properties as defined by the hierarchy and a particular set of
methods which can be used to manipulate the property data
and to communicate with other OLE objects according to the
relationships defined by the hierarchy. This hierarchy will be
discussed in more detail in conjunction with FIGS. 3 and
4A-4C.

Essentially, the DCI 60 communicates with the server
network 66 as if all the OLE objects identified for the
determined hierarchy exist within the memory of the server
network 66. The DCI 60 implements a simple set of calls
necessary for communicating with the OLE objects in the
OLE protocol. In reality, however, the data and methods of
cach OLE object are not actually stored or placed in the
memory of the server network 66 until a call, such as a read
or write call, is sent to the server network 66 for such OLE
object by, for example, the DCI 60, the DDS 72, the smart
device communication network 74, or the FMS database
interface 80. At that time, the server network 66 recognizes
that the data and methods pertaining to the OLE object must
be retrieved and stored in memory associated with one of the
servers 68 or 70 and automatically performs the functions
necessary to retrieve the data and methods of that OLE
object.

‘When the server network 66 receives a call. relating to the
reading or writing of data or methods within one of the OLE
objects stored in its memory, the server network 66 returns
the requested information or performs the requested function
to the OLE object data according to its stored routines 5o as
to read data from, and write data to, the OLE object, the
DDS 72, the smart devices within the process 12 and the
FMS database 40.

Likewise, the DCI 60 recognizes or receives changes in
OLE objects stored within the memory associated with the
server network 66 and performs functions based thereon to
implement communication with the current application 56
and the interface block 58. The device server 68 is essen-
tially a set of software routines which have a specified
correspondence with the set of OLE objects in the deter-
mined OLE hierarchy. These routines are specifically devel-
oped to communicate with a DDS 72, a smart device
communication interface 74, and the OLE objects of the
defined hierarchy. Such routines may, for example, transmit,
retrieve, and change particular types of data and information
stored within, or available from, the smart devices within the
process 12 and/or from DD’s (which are files) associated
with the smart devices within the process 12. I ikewise, the
database server 70 is essentially a set of software routines
associated with the OLE objects in the determined OLE
hierarchy. These routines communicate with the DDS or API
72 andfor an FMS database interface 8CI to, for example,
transmit, retrieve, or change particular types of data and
information stored within, or available from, the FMS
database 440 and/or from the IYD’s which are associated with
the smart devices for which data is stored in the FMS
database 40. As indicated in FIG. 2, the DI)’s used by the
DS 72 are stored in a device description library 76 coupled
to the DDS library 72.

The routines of the servers 68 and 70 arc associated with
each of the OLE objects in such a way that the routines
which perform the particular read functions required for
retrieving the data of an OLE object from the DDS 72, from
smart devices, or from the database 40 are automatically
implemented by a request for such data from the DCI 60.
Likewise, the routines of the servers 68 and 70 are associ-
ated with each of the OLE objects in such a way that the

10

15

20

25

30

35

40

45

50

55

60

65

10

routines which perform the particular writing functions
required for changing the configuration of smart devices or
storing information in the database 40 are automatically
implemented by a request made by the DCI 60 to write such
data in the OLE object.

These server routines are simple, straightforward, and
casy to write by those skilled in the art and are not, therefore,
provided herein. However, those familiar with OLE and
DDL’s can create such routines in a straightforward manner
using any desired programming language.

Generally, to retrieve specific data from, or pertaining to,
one of the on-line devices of the process 12, the server 68
asks the DDS 72 for the specific data. If that data is stored
in the DD for a smart device, the DDS 72 then consults the
DD for the referenced device or the DD associated with a
block of the referenced device and returns the requested data
to the server 68.

If the specific data was available from the DD, the server
68 stores and maintains that data in the OLE object to which
the retrieved data is related. If however, the requested
specific data is not available from the DI for a device or a
block of a device but is stored, instead, in the on-line device,
the server 68 sends a command to the smart device com-
munijcation interface 74 (which may comprise any known
smart device communication interface including, for
example, a Fieldbus device interface developed by SoftIng,
a German company located in Karlsmhe, or the HART
device interface of Micromotion, located in Boulder, Colo.)
to retrieve the specific data from the on-line device.

The smart device communication interface 74 then sends
a request to the DDS 72 for information on how to get the
specific on-line device for the data requested by the server
68. The DDS 72 retrieves this instruction information from
the DD for the on-line device and returns the instruction
information to the smart device communication interface 74
which, in turn, sends a proper request to the on-line smart
device. The smart device then responds with a data stream
including the specific data. The smart device communication
interface 74 then sends a request to the DDS 72 for infor-
mation on how to interpret the data stream received from the
on-line smart device. The DDS 72 then retrieves interpre-
tation instructions from the DD for the on-line smart device
and returns them to the smart device communication inter-
face 74 which, in turn, interprets the data stream from the
on-line device in accordance with the interpretation instrue-
tions in order to extract the specific data requested by the
server 68. The smart device communication interface then
returns the specific data to the server 68 which provides the
retrieved data to the OLE object with which that data is
associated.

The process of writing data to an on-line device is similar
to the process of reading data from that device except that
the server 68 first sends a request to the DDS 72 for write
information, e.g., whether the data is writable, what type,
specific values and range of data can be written, etc. If the
data is writable, the server 68 sends a write command to the
smart device communication interface 74 which, in turn,
interfaces with the DDS 72 for write protocols for the
on-line device and sends the proper write command to the
on-line device in response to the information. The smart
device communication interface 74 can also interpret other
data from the on-line devices, such as write verifications,
response codes, data or value changes which occur in the
device, etc. and sends such data to the server 68 for storage
in the proper OLE object.

In some instances, the DDS 72 will inform the server 68
that it needs more information to answer a request for data.

5,903,455

1

For example, the DDS 72 may determine that the handling
property of a parameter (i.c., whether the parameter is
readable and/or writable) is dependent on the mode param-
eter of a particular device, The DI}S 72 sends a request to the
server 68 for the mode parameter of the device. In response
thereto, the server 68 sends a request for the mode parameter
of a device to the smart device communication interface 74
which operates as described above to retrieve the mode
parameter of the device. When the server 68 receives the
mode parameter of the device from the smart device com-
munication interface 74, it sends this information to the DDS
72 which, thereafter, determines the handling property of a
parameter of a device and returns such property to the server
68 which, in tum, places that value in the proper OLE
parameter object.

Communication between the server 70, the DDS 72 and
the FMS databasc interface 80 is similar to that described
above, except that the FMS database interface 80 is pro-
grammed to read and write information to and from the FMS
database 40 instead of a smart device. Generally, however,
the FMS database interface 80 mimics the functions of the
smart device communication interface 74 as they relate to
communications between the DDS 72 and the server 70.

It is possible to have the FMS database interface 80 store
information pertaining to, for example, values associated
with off-line devices and data pertaining to changes made to
on-line and off-line devices in the database 40 in a DDL
format, i.¢., in a format that mimics how such data is stored
in on-line devices. In such a situation, the FMS database
interface 80 may need to access the DDS 72 to determine
how the data is stored in the FMS database 40. For example,
in some instances, the database 40 stores parameter values,
such as past parameter values in order to, for example,
mimic the state of a device. Consequently, the FMS database
interface 80 may have to access the DDS 72 to retrieve this
information to know what type of data is stored in the
database, i¢., integer, enumerated, etc. However, informa-
tion stored in the database 40 need not be stored in a DDL
format. Therefore, to service. a command from the server 70
to read data from, or write data to, the database 40, the FMS
database interface 80 may not need to access the DS 72 for
device values. Instead, the FMS database interface 80 may
write data to, and read data from, the database 40 directly.

The FMS database interface 80 is preferably an applica-
tion program interface (API) of any conventional type which
is specifically set up and configured for retrieving informa-
tion from the database 40 according to any desired or known
method. Thus, the FMS database interface 80 automatically
keeps track of where and how data is stored in, and retrieved
from the database 40.

As indicated above, the current application 56 and, if
desired, the interface block 58 can also interface with the
database 40 through the FMS database interface 62 and the
ODBC block 64. The FMS database interface 62 may
comprise any desired or known applications program inter-
face (API) having a library of routines developed to convert
data and requests from a format recognizable or used by the
current application 56 into a form recognizable and usable
by the ODBC block 64 and vice-versa.

FIGS. 3 and 4A—4C illustrate a particular hierarchy of
OLE objects which has been developed to represent all of
the information defined within or available from one or more
DIIL’s, a set of smart devices which follow the protocols of
those DDL’s and a database which stores information
related to devices using those DDL's. The hierarchy of
FIGS. 3 and 4A-4C also represents the relationships

10

15

20

25

30

35

40

45

50

55

60

65

12

between those OLE objects. This hierarchy can be used
within an OLE environment to enable an application to
retrieve information associated with a DDL, smart devices
which use that DDL, and a database which stores informa-
tion pertaining to smart devices which use that DDI. Thus,
the hierarchy of FIGS. 3 and 4A-4C represents not only an
arrangement of DDL information (i.e., information available
from DI¥s of DDL’s and/or information available from a
device or a database associated with devices using one or
more DDL’s), but also a way of defining a communication
interface between the DCI 60 and the servers 68 and 70 of
FIG. 2 in order to access, retrieve, and change this infor-
mation.

Each of the OLE objects in the hierarchy of FIGS. 3 and
4A-4C is preferably an OLE automation object and is
represented as an oval having the type of OLE object
identified therein. Each of the OLE objects of FIGS. 3 and
4A-4C includes, or is associated with, a subsct of the
information defined within or used by one or more DDL’s
and available from DI)’'s, smart devices and databases which
store information pertaining to smart devices.

Generally, each of the OLE automation objects of FIGS.
3 and 4A—4C includes properties (or attributes), methods
and interfaces. Because the OLE objects within FIGS. 3 and
4A-4C are automation objects, they have an IDispatch
interface (a well-known interface of the OLE protocol)
associated therewith, The IDispatch of the OLE automation
objects of FIGS. 3 and 4A—4(C can be used by, for example,
the DCI 60 and the server network 66 to retrieve information
pertaining to the properties and the methods of that OLE
object and co communicate with other OLE objects.

The properties of an OLE object comprise data pertaining
to the objects. Each property also has functions which can be
used, for example, to get the property value and to set the
property value of the OLE object. Example OLE object
properties include the name of the object, a count of the
oumber of items within or associated with the object, a label
associated with the object, and help associated with the
object.

OLE object methods perform actions on OLE objects, or
on the data in OLE objects, implement particular routines
using the data in OLE objects, and communicate with other
OLE objects. For example, a method may emmmerate a set of
values in other OLE objects. Together, the properties and the
methods of an OLE automation object define the program-
mable interface of that OLE object accessible by the server
network 66 and the DCI 60.

The hierarchy of FIGS. 3 and 4A—4C comprises an upper
hierarchy, illustrated in FIG. 3, and a lower hierarchy,
illustrated in FIGS. 4A—4C The upper hierarchy of FIG. 3
corresponds to and illustrates the physical or defined con-
nectivity of devices such as HART, Fieldbus, and other
smart or conventional devices, and blocks, such as Ficldbus
blocks, connected within a process. The lower hierarchy of
FIG. 4A-4C illustrates relationships among the data which
is available from, or referenced by, DDL's such as the
HART and Fieldbus DDL’s, and the data which is stored in
and/or available from DIY’s, smart devices and/or a database
pertaining to smart or other devices.

The OLE objects of the hierarchy of FIG. 3 and 4A-4C
are based on categories of information found in the Fieldbus
DDL. The specific relationships between these categories
and the Fieldbus protocol is described in detail in U.S. patent
application Ser. No. 08/599,371, cntitled “System and
Method for Managing a Transaction Database of Records of
Changes to Field Device Configurations™ filed Feb. 6, 1996,

5,903,455

13

which is assigned to the assignee of the present application
and which is hereby expressly incorporated by reference
herein. It should be recognized, however, that the OLE
objects of FIGS. 3 and 4A—4C similarly have functionally
equivalent types of data, definitions, and constructs available
in other DDL's, such as the HART DDL, and that the
hierarchy of FIGS. 3 and 4A—4C therefore can be applied to
any DDL.

As noted above, the OLE objects of FIGS. 3 and 4A—4C
have been developed to map onto and represent the data
available from or defined by the Fieldbus and HART DDI ’s.
Thus, for example, the Block object of FIG. 3 represents and
corresponds to the block entity recognized and used by the
Ficldbus DDL, while the Device object of FIG. 3 and the
Parameter object of FIG. 4A represent and correspond to the
device and parameter entities, respectively, recognized and
used by both the HART and Fieldbus DDL’S.

Each OLE object within the hierarchy of FIGS. 3 and
4A—4C can be accessed or defined by traversing a path
through the hierarchy to that OLE object. Beginning at the
top of FIG. 3, every path through the hierarchy of FIGS. 3
and 4A-—4C includes a Root object. Root objects define,
among other things, the ViewTime to which the data within
any of the OLE objects below the Root object pertains, More
specifically, the Root object is associated with a ViewTime,
which may be “past,” “present,” or “future” and, in some
instances, which specifies a particular time. If the ViewTime
is present, the time is the actual time. If the ViewTime is
past, the time may be set to any historical time but,
preferably, is set to a time at which a change was made to
one or more parameter values. Preferably these changes are
stored in the database 40 in, for example, an event log. If the
ViewTime is future, the time may be set to any future time
or may be set to indicate only that it refers generally to the
future.

The Item method of the Root object includes a set of
collections, as identified in the OLE Object Definitions
table, which defines the next layer in the hierarchy of FIG.
3. Generally, the collections of the Item method of an OLE
object define interconnections between that OLE object and
the OLE objects below that OLE object within the hierarchy
of FIGS. 3 and 4A—4C. Each collection of an Item method
of an OLE object is illustrated in the hierarchy of FIGS. 3
and 4A—4C by the quoted name of that collection below the
OLE object which includes that collection. The generic
name of the members within a collection are identified in the
hierarchy of FIGS. 3 and 4A—4C by unquoted and under-
lined expressions located beneath the OLE object associated
with the collection type and above the OLE object which has
information pertaining to this expression as one of the
propertics thereof.,

Thus, for example, the Root object has a collection of
BlockTag objects (identified as the “BlockTag” collection),
cach of which has a particular name illustrated generally in
FIG. 3 as Block Tag. Generally, a block tag is a unique
identifier assigned to a particular block within the FMS
system by a technician installing/configuring the FMS sys-
tem in order to identify a particular block. A BlockTag object
having a name of BlockTag, therefore, uniquely defines a
Block object, as illustrated in FIG. 3. As is evident, the
actual mumber of BlockTag objects within the hierarchy of
FIGS. 3 and 4A—4C is dependent on the number of blocks
(as that name is used in the Fieldbus DDL protocol) con-
nected to or associated with the FMS system 10.

The PhysicalTag, DeviceID), and DeviceTag objects relate
to or are associated with the “PhysicalTag,” “DevicelD,”

10

15

20

25

30

35

40

45

50

55

60

65

14

and “DeviceTag” collections of the Root object,
respectively, and are used to uniquely define a particular
device connected to or associated with the FMS system 10.
A device ID typically includes a triplet of information
comprising the name of the device manufacturer, the model
number of the device, and the serial number of the device.
Device tags and physical tags usually refer to a location of
the device in a plant or a process such as the process 12. The
value of a physical tag and/or a device tag can be, for
example, an alphanumeric code associated with a specific
physical location in the plant or any other description of a
physical location. For HART devices, the physical tag is
considered the same as the device tag whereas, for Fieldbus
devices, the physical tag can have a different value than the
device tag. The OLE objects in FIGS. 3 and 4A—4C imme-
diately below a quoted collection name, such as the Physi-
calTag object, the DeviceTag object, and the DevicelD
object, are also referred to as collections because they are
related to constructs which a DDL considers or defines as
collections.

In licu of, or in addition to having a device tag, a physical
tag and/or a device ID, a device can be identified by its
physical communication connection to an FMS system.
Specifically, each device is connected to an FMS network
(illustrated in FIG. 3 by the Network object which is a “Net”
collection of the Root object) through one of a number of
networks, each or which is identified generically by the
expression TCP/IP Node Name.

Each network includes a series of nodes, identified in FIG.
3 by the NetNode object. A network node includes a set of
ports (illustrated by the Port object) which may have names
of, for example, “Com1” or “Com2”. The port may connect
to a device through a modem (identified by the Modem
object) and at one of sixteen station addresses, each of which
is identified by a different StationAddress.

The port of a network node may also connect to a device
through one or more HART interface units (HIU’s)
(identified by an HIU object) having a Station Address. Each
HIU includes one or more interchanges (identified by the
Interchange object) each of which typically includes 8 lines
identified by Line Number. Interchange objects also include
a method (which, contrary to the above-stated general rule
about quoted names, is identified by the label. “Block™)
which returns an interface to the particular Block object that
describes the HIU.

A network node can also be coupled to a device through
one or more different DCS’s, for example, the RS3, Provox,
or other DCS’s. Although FIG. 3 illustrates each of these
ELS connected through a generic DCS object, the actual
connection to an RS3 DCS, for example, would be made and
could be identified in FIG. 3 by a node number, a card
number, a port (typically one of four ports in a card) and a
line (typically four lines per port). However, because the
configurations of these DCS systems are not yet fully
developed, the actual connections with each are not shown
and the DCS object is not mentioned in the OLE Object
Definitions table.

Furthermore, a network node may be coupled to one or
more Fieldbus interface cards. However, because the Field-
bus devices are not yet being sold, the exact connection to
a device 18 not yet known and, therefore, this connection is
not represented in the hierarchy of FIG. 3. However, such a
Fieldbus connection could easily be added by showing a
Fieldbus object and any other OLE objects related to the
components required for a Fieldbus comnection from
between a network node and a device between the NetNode
object and the Device object.

5,903,455

15

Once a device is identified in any manner specified above,
a block within the device can be uniquely determined by the
“Tag” collection, illustrated as the Tag object, having the
HART Tag name. If the device is a HART device, the
contents of which are represented by only one conceptual
block, the block is already uniquely identified and can
simply be specified by the “HART” collection. The names of
the tags related to the Tag object are specified as HART Tag
in FIG. 3 because the HART tag of HART devices is used
as this identifier However, other tags for other types of
devices could be used instead.

As suggested above, a Block object and, correspondingly,
a block of a process, can be uniquely identified by traversing
any of the above defined paths through the upper hierarchy
of FIG. 3. Likewise, every other OLE object within the
hierarchy of FIGS. 3 and 4A—4C can be identified by a
unique moniker derived by traversing a path from the Root
object at the top of tile hierarchy of FIG. 3 through to the
particular OLE object. Thereafter, the properties and meth-
ods of any of the OLE objects within the hierarchy of FIGS.
3 and 4A-4C can be referenced and obtained using the
moniker developed for that OLE object.

More particularly, a moniker can be determined from the
hierarchy of FIGS. 3 and 4A—4C by compiling a string
comprising the quoted and the unquoted/underlined expres-
sions encountered in traversing a path from the Root object
in FIG. 3 to the OLE object of interest, and separating these
expressions with an exclamation point (“!”). For example,
the moniker for a Block object can be any of the following:

Root!BlockTag!Block Tag!

Root!Physical Tag HART Tag!Tag!HART Tag

Root!DevicelD! Unique Identifier! HART

Root!Net! TCP/AP Node Name!Port

Name!Modem!Station Address! Tag!HART Tag

As will be evident, monikers for other OLE objects
illusirated in FIGS. 3 and 4A—4C can be developed using
this format. The *NamedConfig” collection of the Root
object of FIG. 3 (represented by the NamedConfigs object)
relates to objects which are stored in the FMS database 40
and which are not available from a device. Each Named-
Configs object is identified by a ConfigName to specify a
particular NamedConfig object. A NamedConfig object may
include, for example, a “recipe” or particular configuration
of a block necessary for implementing a particular function
within a process, a past configuration of a block within a
process, or for that matter, any other desired user informa-
tion related to Block objects. However, to the server network
66 of FIG. 2, cach. NamedConfig object looks similar to a
Block object except that the parameter value data of a
NamedConfig object is retrieved from the FMS database 40
as opposed to being retrieved from a device. NamedConfig
objects may have a subset of the information typically
associated with a Block object.

The lower hierarchy of FIG. 4A—4C illustrates an inter-
relationship among the data associated with each block of a
system. Therefore, as illustrated in FIG. 4A-4C, each Block
object (and each NamedConfig object) includes a set of,
collections denominated “Param,” “Unit,” “Database,”
“Refresh,” “ItemArray,” “Collection,” “Menu,” “Method,”
“BditDisplay,” and “WAQ,” each having an associated
(although slightly differently named) OLE object. Each of
these OLE objects, in turn, have other OLE objects related
thereto as defined in FIGS. 4A—4C. Thus, for example, a
Parameter object identified by a Param Name may be a
VariableParameter object, 2 RecordParameter object or an
ArrayParameter object. If it is a VariableParameter object, it

10

15

20

25

30

35

40

45

50

55

60

65

16

includes collections of “IndexedltemArray,” “Enum,”
“PreEdit,” and “PostEdit,” all having associated OLE
objects. The EnumerationValues object (a collection of the
VariableParameter object for variables of the enumerated
type) has particular enmmerated valies identified by the
Enumeration Value object which, in turn, includes a collec-
tion of Method objects. These Method objects may, for
example, include methods of getting or changing enumer-
ated values of a VariableParameter object.

The property, data, and methods stored in, or associated
with, all of the OLE objects within FIGS. 4A—4C, except for
the DatabaseParameters and DatabascParameter objects,
represent information which is available from or through the
use of DI)’s or a device conforming to a DDI.. The data and
method of the DatabaseParameters objects and DatabasePa-
rameter objects are stored in a database.

As with FIG. 3, any OLE object in FIGS. 4A—4C can be
uniquely identified by a moniker developed by tracing a path
from the Reot object of FIG. 3 down to the particular OLE
object of interest. Thus, for example, the moniker for a
pre-edit Method block could be constructed by adding onto
the end of the moniker for any Block object of FIG. 3, which
is also represented by the Block object of FIGS. 4A—4C the
expression !param!Param Name!PreEdit!Index.

Once a moniker is established for a particular object
within the hierarchy of FIGS. 3 and 4A—4C and stored in the
memory associated with the server network 66, the DCI 60
and the server network 66 can, thereafter, operate on and
access that OLE object using a shorter unique “handle”
generated by the server network 66. The handle may, for
example, comprise a unique mumber identifying an OLE
object which has been stored in the memory of the server
network 66.

In essence, with a unique moniker or the handle, any OLE
object identified by the hierarchy of FIGS. 3 and 4 can be
immediately accessed by the DCI 60 or the server network
66 and the methods within that OLE object can be invoked
in order to accomplish communication with the DDS, a
database, a smart device, or other OLE objects as necessary.
Thus, for example, the software routine within the server 68
which accesses the DDS 72 to retrieve a particular parameter
value from a particular device can be initiated when a call to
the proper VariableParameter object is initiated by the DCI
60 using a command which tells the OLE VariableParameter
object to read a parameter value.

As is evident, the server network 66 communicates with
the database 40, the DDS 72, and the on-line devices
transparently to the DCI 60 and the current application 56,
because the server network automatically accesses the inter-
relationships between the OLE objects identified by the
lower hierarchy of FIG. 4 to determine which set of routines
to implement in order to obtain new information requested
by an OLE object or a DDS.

It should be noted that, for any OLE object of FIGS. 3 and
4A-4C to be accessed, the OLE objects above that OLE
object in at least one path between that OLE object and the
Root Object FIG. 3 must be stored in the server network
memory. Thus, for example, when accessing a VariablePa-
rameter object of a parameter for a block, the Parameter
object and the Block object associated with that parameter
and that block will also be stored in the server network
memory. The Device object, the DevicelDd object and the
Root object may also be stored in the server network
memory. Without these higher level objects, the server
network 66 can not access enough information to determine
how to locate and retrieve the data of the VariableParameter
object.

5,903,455

17

As will be apparent to those skilled in the art, the DCI 60
may operate to communicate with and retrieve information
from the OLE hierarchy represented by FIGS. 3 and 4A—4C
by performing relatively simple routines which, for
example, (1) create an object hierarchy and associate it with
the server network 66, (2) traverse the object hierarchy to
explore the objects below a specified object, (3) implement
standard OIE methods like Item, which traverses a specific
path from one object to another, and NewEnum, which
creates an interface to enumerate objects one level below, (4)
implement methods related to Block objects which may
include methods related to DDL operations, (5) read and
write Root and Device object properties, (6) initiate and
control non-blocking read and write requests from OLE
objects, (7) retrieve results from blocking reads and writes,
(8) control changes to the database 40, and (9) control the
creation and maintenance of an event log that includes
information pertaining to, for example, user changes to the
system including change times, identification of the persons
and the computers which made the changes, etc.

As aresult, an application for the FMS system 10 does not
have to be specifically programmed to interface with a DDS,
database or smart devices which, in turn, allows an appli-
cation developer to be much less knowledgeable with
respect to DDL formats, DD)’s and smart device communi-
cations.

It will be noted that, using the hierarchy of FIGS. 3 and
4A—4C as described above, any application implemented by
the FMS system 10 can interface with FMS devices using,
for example, any OLE-compatible programming environ-
ment to gain access to the IUnknown and IDispatch inter-
faces associated with each object in the hierarchy. It is
considered that Visual Basic programs and C++ programs
are well-suited to use the above-defined OLE hierarchy.

Furthermore, although the hierarchy of FIGS. 3 and
4A—4C is specifically related to the Fieldbus DDL and to the
HART DDL, which is very similar to the Fieldbus DDL, it
is considered that this or a similar hierarchy can be made for
other DDL’s associated with other smart devices including,
for example, Modbus smart devices in accordance with the
present invention. Furthermore, it is considered that the
hierarchy of FIGS. 3 and 4A-—4C can be implemented by
other object-oriented programming protocols and even by
non-object oriented programming protocols.

The functionality of the interface block 58 will now be
described in more detail. As noted above, during operation,
the current application 56 calls the interface block 58 to
initialize one or more specific controls which, thereafter,
automatically handle all operations associated with interfac-
ing between the Windows operating system 49, the smart
devices within the process 12 and/or the FMS database 40
with respect to a device, a block, or a parameter associated
with the process 12. The interface block 58 may also change
the Time property of the Root object stored in the memory
of the server network 66 to control displays in an advanta-
geols manner.

Each control of the interface block 58 displays and
updates information pertaining to a devlce, a block, a
parameter, or a time on the display 30; communicates with
the smart devices, the database 40, and the server network 66
In response to user or application inputs to retrieve data
from, or write data to, the DDS 72, the smart devices, the
database 40, or the Root object in the server network 66,
without further involvement of the current application 56.
Importantly, once established, a control generally appears to
run independently of the current application 56 and of other
controls which may have been established.

10

15

20

25

30

35

40

45

50

55

60

65

18

As illustrated in FIG. 5, the interface block 58 includes a
master control routine 300 which can be used to implement
control functions, including control functions relating to a
device, a block, or a parameter associated with the process
12. The interface block 58 also includes a master timeline
control routine 301 which can be used to implement control
functions such as reading and writing times from the Root
object and changing time values from the database 40.

‘When the current application 56 calls the interface block
58 to implement a device, block, parameter or timeline
control, one of the master control routines 30 or 301 is, in
effect, copied and converted into a specific control routine or
control. Such specific controls are illustrated in FIG. § as a
device control 302, a block control 304, a parameter control
306 and a timeline control 308. The specific controls 302,
304, 306, 308 thereafter automatically handle functions
related to communication between the Windows operating
system 49, the current application 56, the database 40
(through the DCI 60), the DDS 72 (through the DCI 60), and
the on-line smart devices (through the DCI 60) as those
communications relate to the specific devices, blocks,
parameters, or timelines for which the controls are created.
Once established, each of the controls 302, 304, 306, 308
operates continuously and independently of the other con-
trols and the current application 56. Any number of the same
and/or different control types can be implemented to operate
at the same time.

While FIG. § illustrates the controls 302, 304, 306, 308 as
separate routines which are copies of one of the master
control routines 300 or 301, controls 302, 304, 306, 308 can
also contain the data necessary to implement a particular
device, block, parameter, or timeline control using one of the
master control routines 300 or 301.

FIG. 6 generally illustrates the steps that should be
performed by, for example, the current application 56 to
initialize a control, including any of the controls illustrated
in FIG. 5. A block 310 defines the type of the control, for
example, a device, a block, a parameter, or a timeline
control, by providing the interface block 58 with a unique
moniker pointing to the OLE object within the hierarchy of
FIGS. 3 and 4A—4C with which the control is associated.
Because, conceptually, an instantiation of the hierarchy of
FIGS. 3 and 4A-—4C exists for each time available to the
FMS application, the timeline control specifies the Root
object of a particular hierarchy by specifying, for example,
the time and view of the Root object with which the control
is associated.

Ablock 311 defines the user interface attributes including,
for example, the fonts, sizes, ¢tc., of display characters, the
style in which the information is to be displayed, the display
screen location at which the control information is to be
displayed, the initial window size of the control display if
the size of a control display is capable of being changed by
the user, and the so-called “visibility” of the control. Control
visibility defines whether the control will actually be dis-
played or be visible on the screen. While an invisible control
still operates to retrieve data from its associated OLE object
and may provide such information to the current application
56, the user interface operations of that control are simply
disabled.

Ablock 312 defines the refresh rate of the control (i.e., the
rate at which the control will receive information from its
associated OLE object in a periodic read). In effect, the
block 312 connects the control to a particular Root object of
the hierarchy in FIGS. 3 and 4A—4C, and the Root object
defines the rate at which the OLE object will refresh data in
response to a periodic read.

5,903,455

19

FIG. 7, illustrates the general operation of a control
routine which can be used for the device control, the block
control, the parameter control and the timeline control of
FIG. 5. Ablock 313 connects to or establishes a connection
to the proper OLE object as defined by the hierarchy of
FIGS. 3 and 4A—4C and the moniker provided by the current
application 56. Specifically, the control sends a command
through the DCI 60 to the server network 66 to read
information, for example, the properties, of the OLE object
associated with the control. Preferably, this command is a
periodic read which tells the OLE object, such as a device,
a block or a parameter object, to periodically send the
requested data to the control.

In response to the read, the server network 66 establishes
a connection to the OLE object by retrieving the data thereof
from the DDS 72, the smart devices and/or the database 40,
and stores that data as the OLE object in a server network
memory. To perform this read function, however, the server
network 66 must also store in its memory the data pertaining
to the Device and/or Block objects above the requested OLE
object as defined by the hierarchy of FIGS. 3 and 4A—4C.
When stored in the server memory, the requested OLE
object data is sent to the DCT 60 and then to the interface
block 58 where this data may be stored in a memory or
control cache associated with the interface block 58.

Ablock 314 then establishes or initializes a user interface
screen on the display 30 for the particular control as defined
by the user interface attributes provided to the control by the
block 311 of FIG. 6. The display attributes may be config-
ured to display control information in any desired manner
using standard Windows calls and Windows formats. An
exemplary screen for each of the device, parameter, block,
and timeline controls is illustrated in FIGS. 14-17.

Next, a block 315 checks to see if any messages have been
received from the application, the user interface via the
‘Windows operating system 49, or an OLE block through the
DCI 60. If no such messages have been received, the block
315 continually rechecks for such messages. When the block
315 receives a message, control is transferred as indicated by
the identifiers labeled 1, 2, and 3.

FIG. 8 illustrates the operation of a control in response to
a message from the current application 56. A block 316
interprets the message which can be of three general types,
including a read OLE object data message, a charge Param-
eter object value, or a Root object value message and a
change user interface message. In response to a read OLE
object data message, a block 318 reads the requested data
from the referenced OLE object of FIGS. 3 and 4A-—4C. For
example, a device control may read the DevicelD property
or the “Tag” collection of a Device object while a block
control may read the Name property or the “Param” collec-
tion of a Block object. A parameter control might read
parameter properties such as the value or name of a Vari-
ableParameter object. A timeline control can read Root
object properties and may obtain a list of times for which
Root objects exist in the past from the database 440.
Thereafter, the block 318 returns control to the block 315.

In response to a change-parameter or root-value message,
a block 320 implements a change to the referenced param-
eter object, for example, the VariableParameter object,
RecordParameter object, or ArrayParameter object of FIG.
4A—4C and remrns control to the block 315. In response to
a change-user-interface message, a block 322 implements a
change of the user interface and returns control to the block
als.

FIG. 9 illustrates a routine 324 which is implemented by
a control during a read OLE object data procedure.

10

15

20

25

30

35

40

45

50

55

60

65

20

Specifically, a block 326 sends a message through the DCI
60 to the OLE object associated with the control to retrieve
data from that OLE object. Thereafter, a block 328 deter-
mines what type of read message was received. If a non-
blocking, non-pericdic or a non-blocking, periodic read
message was received, the block 328 returns control to the
block from which the routine 324 was called. A non-
blocking read refers to one in which the control sends a read
message to the OLE object associated with the control and
does not wait for a response from the OLE object before
contimiing with other functions. A non-periodic read is a
request for a single, one-time read from the OLE object
associated with the control. A periodic read instructs the
OLE object to periodically notify the control of changes
which occur to data within the OLE object at a rate defined
within the Root object associated with that OLE object.

If, however, the read was a blocking read, which is always
a non-periodic read, a block 330 waits for the return data
requested from the OLE object. Next, a block 332 stores the
received OLE object data in the control cache. If necessary,
a block 334 changes the user interface by calling a user
interface change routine described hereinafter to reflect the
new data obtained by the read. A block 336 notifies the
current application 56 if the application has identified that it
wants to receive messages or data changes from OLE object
data reads during, for example, initialization of the control.
Thereafter, control is returned to whatever block called the
routine 324.

FIG. 10 illustrates a routine 338 which is implemented by
a control during a change of a parameter or root value of an
OLE parameter object (such as the VaribleParameter object)
or a Root object. A block 340 determines whether the
parameter or root value indicated to be changed is writable.
In essence, the block 340 sends a message to read the
handling properties of the OLE object and determines
whether the parameter value is writable. If the block 340
determines that the parameter or root data value is not
writable, a block 342 notifies the user or the current appli-
cation 56 that the parameter or root value is not writable,
such as by calling the change-user interface routine
described below. Thereafter, control is returned to the block
from which the routine 338 was called.

If, on the other hand, the block 340 determines that the
parameter or root value is writable, a block 344 determines
if the new parameter value (or root value) is an accepted
value. To perform this function, the block 344 reads, for
example, the value characteristics of the parameter object
associated with the control such as the minimum value, the
maximum value and the type of value accepted which may
be, for example, a variable, an enumerated set, etc. If,
thereafter, the block 344 determines that the new value is out
of range or of the wrong type, a block 346 may send a
message to the application and/or may change the user
display to indicate that an unacceptable value has been
entered. Thereafter, control is returned to the block which
called the routine 338.

If the block 344 determines that the new value is an
accepted value for a parameter or a root object, a block 348
sends a change message to the correct OLE parameter or
root object through the DCI 60. The new value is then
changed in the OLE object which, of course, may cause a
corresponding change in a smart device or in the database

A block 350 waits for a return message and a block 352
decodes the return message to determine if the write was
successful. If the write was successful, a block 354 may
indicate to the application and/or to the user via the user

5,903,455

21

interface that the change was made (e.g., by changing the
color of the background of the data on the screen).

If the block 352 determines that the write was not
successful, a block 356 indicates to the application and/or to
the user via the user interface that the change was not made
(e.g., by changing the data on the screen to its original state).
Incidentally, the response codes associated with an OLE
object are always available to an application so that the
reason for the rejection can be determined and/or displayed
to the user.

If the block 352 determines that the change was made but
that a write condition exists, a block 358 retrieves a response
code from the OLE object by specifically initiating a proper
read from the OLE object. A block 360 then indicates to the
application, and/or to the user if desired, that the change was
made but that a write condition exists. The block 360 may
also indicate the type of condition that exists (e.g., that the
OLE object property was set to the nearest available possible
value). Each of the blocks 354, 356, and 360 returns control
to the block which called the routine 338.

FIG. 11 illustrates a routine 362 which is implemented by
a control to change the user interface display. A block 364
changes the display interface attributes in conjunction with
new attributes provided by the current application 56, or in
accordance with a set of attributes previously defined by the
control for the condition which now exists. These previously
defined attributes may be stored in a memory associated
with the control, such as the control cache. A block 366
refreshes the user display using the new user display
attributes and the data in the control cache which is to be
displayed. Thereafter, control returns to the block from
which the routine 362 was called.

FIG. 12 illustrates the operation of a control in response
to a message from the user interface. A block 370 checks to
determine if the user action is meaningful. The block 370
may, for example, determine if the user clicked the proper
button of the mouse or if the pointer (i., the cursor or
arrow) was located within an area of the control display
where the control :recognizes the user’s actions as requests
for action. If the user action is not meaningful, a block 372
simply ignores the user action or gives some indication that
the action has been ignored (e.g., refreshing the user display
with the same display interface attributes). Thereafter, con-
trol is returned to the block 315.

On the other hand, if the user action is meaningful, a block
374 interprets the message from the user interface. If the
message from the user interface indicates that the user would
like to change a parameter value or a root value, a block 376
calls the change-parameter/root-value routine 338 and then
returns control to the block 315, If desired the block 376 may
also change the user interface, for example, to implement a
color change to the background field surrounding the data to
be written. Upon receiving an indication of a successful
write, the block 376 may also return the background color to
its original state to indicate that the value has been written
(if the routine 338 has not already done so).

If, on the other hand, the block 374 determines that the
1ser is requesting a change in the user interface, a block 378
calls the change-user-interface routine 362 and returns con-
trol to the block 315,

FIG. 13 illustrates the operation of a control in response
to a message from the DCI 60, ie., from an OLE object
within the hierarchy of FIGS. 3 and 4A—4C block 380 first
determines if the message from the DCI 60 is non-blocking
read return or if the message indicates some other change or
changed condition within the referenced OLE object of the
OLE hierarchy. A condition-change message may, for

10

15

20

25

30

40

45

50

60

22

example, comprise an FMS locking message which prevents
multiple users from accessing a particular block within a
device of a process at the same time. If, for example, a block
is being accessed by a different user by a hand-held com-
municator or another FMS system attached to the device, the
OLE object will identify such condition to the control
through the DCI 60. Thereafter, the control may indicate to
the user that the data of that block is no longer writable by,
for example, displaying a gray background on the screen
surrounding a normally writable value.

In the case of a non-blocking read return, a block 382
determines if the returned value has changed. If so, a block
384 stores this new value in the control cache. The block 384
and, if there has been no change in the data stored in the
control cache, the block 382 provides control to a block 386.
The block 386 is also implemented if the block 380 deter-
mines that the message from the OLE object relates to a
change not related to a non-blocking read.

The block 386 determines if a change to the user interface
is needed, such as if the changed data or the new condition
or status is to be displayed on the screen. If so, a block 390
calls the change-user-interface routine 362 to display the
changed data or the condition to the user. If, however, the
block 386 determines that the changed data or the condition
does not need to be displayed, or if the block 390 has
indicated such changed data or condition to the user, a block
392 determines if the application should be notified of the
changed data or condition in accordance with pre-written
instructions. If so, a block 394 sends a message to the current
application 56 indicating the changed data or condition.
Thereafter, control is returned to the block 315.

Generally, information accessed by a device, a block, a
parameter, or a timeline control can be displayed on a screen
in any desired manner including (1) the EDIT style wherein
the control behaves similarly to a normal Microsoft Win-
dows Edit control, (2) the COMBO style wherein the control
behaves similarly to a normal Microsoft Windows Combo
Box control (i.e., as a drop down list), (3) the LIST style
wherein the control behaves similarly to a normal Microsoft
Windows List Box control (i.e., such that each item in the
emumeration will be represented as a List box eniry), (4) the
GROUP style wherein the control behaves similarly to a
normal Microsoft Windows Group Box control, or (3) the
PANEL style wherein the control displays either a raised or
a sunken panel and/or any other desired style or format.

FIG. 14 illustrates control displays 400 and 402 associ-
ated with two device controls. Each of the device control
displays 400 and 402 includes a picture or digital bitmap of
the device (usually provided by a device manufacturer or the
DDS provider), which is stored in a memory associated with
the current application. Instead, this bitmap may be stored in
the database 40 so as to be accessible by the OLE objects.

The control displays 400 and 402 may include any other
desired information about a device including, for example,
the name (illustrated in FIG. 14), tags, moniker, etc. of a
device, or any other desired device-specific information.
Furthermore, menus for the device can be provided in a
pull-down window associated with the device control dis-
plays 400 and 402. Such menus may include files associated
with a device, for example, the names of the collections
associated with a Device object for the device, methods
which can be implemented on the device, including
calibration, resetting, and self-testing methods, blocks asso-
ciated with the device, a list of parameters associated with
the device, help for the device, service notes for the device,
etc. Other information about a device which may be dis-
played includes the contents of every variable of each

5,903,455

23

parameter in a device, the face-plate information of a device,
the operational status of the device, including, for example,
whether an error has occurred within the device and a
side-by-side list of, for example, the values of variables of
one or more parameters of a device as they exist or existed
at specified times.

FIG. 15 illustrates a general parameter control display 406
along with particular parameter control displays 408, 410,
and 412 associated with three specific parameter controls for
the parameters of a device. Each of the parameter control
displays 406412 is located at a different portion on a screen
and, in particular, the parameter control display 406 is
located at the top of the screen while the parameter control
displays 408, 410 and 412 are located in sequence below the
parameter control display 406.

The parameter control display 406 illustrates that a
parameter control display may have three fields, including a
label field, which provides information pertaining to the type
of information being shown, for example, “Pressure,”
“Temperature,” or “Mode,” a value field which shows the
value of a parameter and a units field which indicates the
units in which the value is expressed. The value of a
parameter can be an integer number, a decimal number
(parameter control displays 408 and 410) or an enumerated
value consisting of one of an enumerated set of values, as
listed in a pull-down menu associated with the parameter
control display 412, The parameter control display 412 does
not include a units variable because such a wvariable is
mapplicable to the enumerated set associated therewith.

FIG. 16 illustrates two block control displays 414 and 416
associated with block controls. Similar to a device control
display, a block control display typically includes a picture
or other representation of a block and/or any other desired
information pertaining to a block and/or the device in which
the block is located including, for example, whether a block
is an input, output, or control (or interface) block.

FIG. 17 illustrates two timeline control displays 420 and
422 which are used to control and change the time and view
properties of OLE Root objects to which other controls, such
as device, block, and parameter controls may be connected.
Each of the timeline controls associated with the displays
420 and 422 can change the time value of its respective Root
object to any of the previous times for which Root objects
are available, which will typically include the past times
when changes were made to the system and for which
transaction records are stored in a transaction database of the
FMS database 40 (FIG. 1). Furthermore, the timeline con-
trols associated with the control displays 420 and 422 can
change the view of a Root object between a past, a present,
or a future setting,

Each timeline control display usually includes, as illus-
trated in FIG. 17, a slider 424 indicating which one of the
past, present, and future views is selected as well as a combo
box 426 which allows a uscr to sclect from a set of historical
times, each having, for example, a date and a time.

By changing the timeline control slider 424, the user tells
the timeline control to change the Root object View property
associated with that timeline control. By changing the time-
line control combo box 426, the user tells the timeline
control to change the Root object time value to a specified
time.

‘When a timeline control changes the time or view of a
Root object, any other controls, such as parameter, device or
block controls which are associated with that Root object
will automatically be updated in response to change mes-
sages generated by the OLE objects. These change messages
will be generated by the OLE objects when the OLE objects

10

15

20

25

30

35

40

45

50

55

60

65

24

within the same hierarchy as the Root object retrieve new
data pertaining to the new time or view now associated with
the Root object.

FIG. 17 also illustrates temperature and pressure param-
eter control displays 430 and 432 which are connected to the
same Root object as the timeline control associated with the
timeline control display 420. Likewise temperature and
pressure parameter control displays 440 and 442 are con-
nected to the same Root object as the timeline control
associated with the timeline control display 422. Because
the timeline control displays 420 and 422 are set to different
times, i.e., a past time (control display 420) and the present
(control display 422), the values of the temperature param-
eters 430 and 440 are different and the values of the pressure
parameters 432 and 442 are different. A list of such param-
eter control displays can be configured on the screen to
display one or more complete configurations for a device,
block, etc. Device and block and/or other parameter controls
can also be associated with the same Root object as timeline
controls and can be used to illustrate a configuration display
which shows a configuration of a device, a block, or a
parameter at different times in a side-by-side or other
relationship on a screen. A timeline control can also be used
in conjunction with other controls on a display to scroll
through the settings or values of devices, blocks or param-
eters or a set of such device, blocks, or parameters. As is
evident, any desired combination of timeline, device, block,
parameter and/or other controls may be used to illustrate any
desired past: and or present information to a user including,
for example, information related to on-line devices at the
present time, i.c., on-line data, and information related to
on-line devices in the past or future, and to off-line devices
in the past, present or future, ie., off-line data. Furthermore,
as indicated with respect to FIG. 23, the same data, for
example, the same parameter values for a device, may be
illustrated for different times using timeline controls and, if
desired, routines may be implemented to indicate the dif-
ferences between the sets of values.

The timeline control changes the Time property of the
Root object to a specific time (designated hereinafter as the
ViewTime), which the user specifies using the timeline
control. Consequently, the time attributes for all of the
objects downstream of the Root object in the OLE hierarchy
are changed to match the ViewTime as described above. In
addition, the values of other properties of those objects are
updated to the values corresponding to that ViewTime.

For a Block object in particular, the state of the corre-
sponding block at any desired time (e.g., the ViewTime
specified using the timeline control) is obtained using a
transaction database. More particularly, the values of the
parameters of the Block object at the ViewTime (i, the
values of the Value properties of the Parameter objects of the
Block object as of the ViewTime) are obtained by searching
the transaction database in reverse-chromological order
beginning at the ViewTime to find the values last assigned
to the parameters corresponding to those Parameter objects
on or before the ViewTime.

FIG. 18 is a flowchart illustrating how a state of a
particular block can be reconstructed from the transaction
database. First, a block 450 initializes a set variable {S} to
null. The set variable {S} is used to accumulate the values
as of the ViewTime of the parameters of the block whose
ViewTime state is to be reconstructed. A block 452 then sets
a time associated with the state {S} equal to the ViewTime.
Thereafter, a block 454 determines whether the set variable
{S} includes a value for each parameter of the Block Object.
If it does, then a block 456 assigns the assembled state {S}

5,903,455

25
as the state of the block at the ViewTime, and execution of
the state reconstruction routine of FIG. 18 ends.

If the block 454 determines that the accumulated-state
(ie., the contents of the set variable {8}), does not include
values for every parameter in the block, then a block 458
identifies the next parameter P for which a current value is
not included in the accumulated state {S}. A block 460 then
searches the transaction database in reverse-chronological
order beginning at the ViewTime to find the latest-made
change TR made at or before the ViewTime. A block 462
then adds the parameter P, with the value of the parameter
P sct by the change represented by transaction TR, to the
accumulated state {8}, and control then returns to the block
454 to check, once again, whether values of all parameters
in the block have now been accummulated in the state {S}.

Although the device, block, parameter, and timeline con-
trols are illustrated and described herein, other controls
according to the present invention could be constructed to
llustrate other properties or data available through DDL,
including data within any of the OLE objects illustrated in
FIGS. 3 and 4A—4C.

While the present invention has been described with
reference to specific examples, which are intended to be
llustrative only, and not to be limiting of the invention, it
will be apparent to those of ordinary skill in the art that
changes, additions and/or deletions may be made to the
disclosed embodiments without departing from the spirit and
scope of the invention.

We claim:

1. Aninterface control adapted for use with a management
system having a user interface, a database and a commuuni-
cation network that communicates with the database, a field
device and a device description associated with the field
device, wherein the field device, the device description and
the database store a multiplicity of groups of logically
related items of device data, the interface control compris-
ing:

means for implementing a particnlar interface control for

an indicated group of the multiplicity of groups of

logically related items of device data including;

means for commanding the communication network to
read the items of device data associated with the
indicated group from at least one of the field device,
the device description, and the database to produce a
set of items of retrieved device data for the indicated
group, and

means for displaying the set of items of retrieved
device data for the indicated group via the user
interface in a predefined format;

means for identifying any one of the multiplicity of

groups of logically related items of device data as the
indicated group; and

means responsive to the identifying means for invoking

the implementing means to create the particular inter-
face control for the indicated group.

2. The interface control of claim 1, wherein the imple-
menting means further includes means responsive to the user
interface for instructing the communication network to
implement a change to one of the items of device data
associated with the indicated group as the one of the items
of device data is stored in the field device or the database.

3. The interface control of claim 2, wherein the instructing
means includes means for determining if the change to the
one of the items of device data associated with the indicated
group is allowable and means for indicating, via the user
interface, that the change is not allowable when the deter-
mining means determines that the change is not allowable.

10

15

20

25

30

35

40

45

50

55

60

65

26

4. The interface control of claim 3, wherein the determin-
ing means includes further means for commanding the
communication network to retrieve a range indication asso-
ciated with the one of the items of device data associated
with the indicated group from one of the device description,
the field device and the database and. means for checking to
determine if the change to the one of the items of device data
associated with the indicated group falls within the range
defined by the retrieved range indication.

5. The interface control of claim 2, wherein instructing
means includes means for determining if the change to the
one of the items of device data associated with the indicated
group is completed and means for indicating, via the user
interface, that the change to the one of the items of device
data associated with the indicated group has been com-
pleted.

6. The interface control of claim 5, wherein instructing
means includes further means for indicating, via the user
interface, that the change to the one of the items of device
data associated with the indicated group is in the process of
being completed.

7. The interface control of claim 1, wherein the imple-
menting means further includes means coupled to the com-
munication network for recognizing a change in one of the
items of device data associated with the indicated group as
stored in the field device or the database and means respon-
sive to the recognizing means for indicating the change of
the one of the items of device data associated with the
indicated group via the user interface.

8. The interface control of claim 1, wherein the set of
items of retrieved device data for the indicated group
comprises data pertaining to the field device, and wherein a
first of the set of items of retrieved device data includes a
pictorial representation of the field device.

9. The mterface control of claim 8, wherein a second of
the set of items of retrieved device data includes an indica-
tion of the type of the field device.

10. The interface control of claim 9, wherein a third of the
set of items of retrieved device data includes an indication
of the location of the field device with respect to a system in
which the field device is used.

11. The interface control of claim 10, wherein a fourth of
the set of items of retrieved device data includes a list of
information pertaining to the field device.

12. The interface control of claim 11, wherein the list
includes at least one of methods for implementation on the
field device and parameters associated with the field device.

13. The interface control of claim 1, wherein the set of
items of retrieved device data for the indicated group
comprises data pertaining to a block of the field device
comprising one of an input, an output, or a control function
associated with the field device, and wherein a first of the set
of items of retrieved device data includes a pictorial repre-
sentation of the block.

14. The interface control of claim 13, wherein a second of
the set of items of retrieved device data includes an indica-
tion of the type of the block

15. The interface control of claim 14, wherein a third of
the set of items of retrieved device data includes an indica-
tion of the mannoer in which the block is associated with a
system in which the block is used.

16. The interface control of claim 15, wherein a fourth of
the set of items of retrieved device data includes a list of
information pertaining to the block.

17. The interface control of claim 16, wherein the list
includes an indication of a set of parameters associated with
the block.

5,903,455

27

18. The interface control of claim 1, wherein the set of
items of retrieved device data for the indicated group
comprises data pertaining to a parameter associated with the
field device, and wherein a first of the set of items of
retrieved device data includes a label of the parameter and
a sccond of the set of items of retrieved device data includes
a value of the parameter.

19. The interface control of claim 18, wherein a third of
the set of items of retrieved device data includes a unit
designation associated with the value of the parameter.

20. The interface control of claim 18, wherein the value
of the parameter comprises one of an enumerated list of
potential values.

21. The interface control of claim 1, wherein the set of
items of retrieved device data for the indicated group
comprises configuration data related to the configuration of
the field device at a particular time, and wherein the imple-
menting means includes means for changing the particular
time associated with the set of items of retrieved device data.

22_The interface control of claim 21, wherein the chang-
ing means includes further means for displaying a represen-
tation of a slider via the user interface and means for
allowing manipulation of the slider to change the particular
time.

23_ The interface control of claim 21, wherein the chang-
ing means includes further means for changing the particular
time between one of a plurality of times in the past, a present
time, and a future time.

24. The interface control of claim 1, wherein the set of
items of retrieved device data for the indicated group
comprises configuration data related to two configurations of
the field device at two particular times, and wherein the
displaying means includes means for changing the particular
time associated with the items of retrieved device data for
the indicated group related to one of the two configurations.

25_ A control adapted for use by a2 management system
that includes a user interface and that is capable of being
coupled to a plurality of field devices, each having a device
description associated therewith, the control comprising:

means for communicating with the plurality of field

devices and the device descriptions to effect commu-

nication with respect to a multiplicity of groups of

logically related items of device data stored in the

plurality of field devices and the device descriptions;

means for implementing a particular control for a par-

ticular one of the multiplicity of groups of logically

related items of device data including,

means for controlling the communicating means to
retrieve the items of device data within the particular
one of the multiplicity of groups of logically related
items of device data to produce a retrieved group of
items of device data, and

means for displaying the retrieved group of items of
device data via the user interface in a predefined
format;

means for identifying any of the multiplicity of groups of

logically related items of device data as the particular
one of the multiplicity of groups of logically related
items of device data; and

means responsive to the identifying means for invoking

the implementing means to create the particular control
for the particular one of the multiplicity of groups of
logically related items of device data.

26. The control of claim 25, wherein the implementing
means further includes means responsive to the user inter-
face for instructing the communicating means to change one
of the items of device data within the particular one of the
multiplicity of groups of logically related items of device
data.

10

15

20

25

30

35

40

45

50

55

60

65

28

27. The control of claim 26, wherein the instructing means
includes means for determining if the change to the one of
the items of device data is allowable and mecans for
indicating, via the user interface, that the change is not
allowable when the determining means determines that the
change is not allowable.

28. The control of claim 26, wherein the instructing means
includes means for determining if the change to the one of
the items of device data is completed and means for
indicating, via the user interface, that the change to the one
of the items of device data has been completed.

29, The control of claim 26, wherein the communicating
means includes means for recognizing when a further one of
the items of device data changes to a changed item of device
data and wherein the implementing means further includes
means responsive to the recognizing means for antomati-
cally illustrating, via the user interface, the change to the
further one of the items of device data when the further one
of the items of device data is within the particular one of the
multiplicity of groups of logically related items of device
data.

30. The control of claim 29, wherein the illustrating
means includes means for replacing one of the items of the
retrieved group of items of device data with the changed
item of device data via the user interface.

31. The control of claim 25, wherein the management
system also includes a database that stores items of device
data, wherein the communicating means includes further
means for communicating with the database and wherein the
implementing means includes further means for controlling
the communicating means to retrieve, as part of the retrieved
group of items of device data, the items of device data which
are associated with the particular one of the multiplicity of
groups of logically related items of device data and which
arc stored in the database.

32, The control of claim 31, wherein the displaying means
includes means for making the displayed retrieved group of
items of device data invisible to a user via the user interface.

33. The control of claim 31, wherein the communicating
means includes means for categorizing the items of device
data into a predetermined hierarchy of categories of device
data, each having communication instructions, and wherein
the communicating means communicates with one of the
plurality of devices, one of the device descriptions or the
database using the communication instructions associated
with one of the categories of the hierarchy of categories of
device data.

34. The control of claim 33, wherein the categorizing
means includes objects in an object-oriented programming
paradigm.

35. The control of claim 31, wherein the retrieved group
of items of device data comprises data pertaining to one of
the plurality of field devices, and wherein a first item of the
retrieved group of items of device data includes a pictorial
representation of the one of the plurality of field devices.

36. The control of claim 35, wherein a second item of the
retrieved group of items of device data includes an indica-
tion of the type of the one of the plurality of field devices.

37. The control of claim 31, wherein the retrieved group
of items of device data comprises data pertaining to a block
comprising one of an input, an output, or a control function
associated with one of the plurality of field devices, and
wherein a first item of the retrieved group of items of device
data includes a pictorial representation of the block.

38. The control of claim 31, wherein the retrieved group
of items of device data comprises data pertaining to a
parameter associated with one of the plurality of field

5,903,455

29

devices, and wherein a first item of the retrieved group of
items of device data includes a label of the parameter and a
second item of the retrieved group of items of device data
includes a value of the parameter.

39, The control of claim 38, wherein a third item of the
retrieved group of items of device data includes a unit
designation associated with the value of the parameter.

40. The control of claim 31, wherein the retrieved group
of items of device data comprises configuration data related
to the configuration of one of the plurality of field devices at
a particular time, and wherein. the implementing means
includes means for allowing a user to change the particular
time associated with the configuration data.

41. The control of claim 40, wherein the allowing means
includes means for changing the particular time between one
of a number of past times, a present time, and a future time.

42. The control of claim 31, wherein the retrieved group
of items of device data comprises configuration data related
to first and second configurations associated with one or two
of the plurality of field devices at two individual times, and
wherein the implementing means includes means for allow-
ing a user to change the individual time associated with the
configuration data related to the first configuration.

43. The control of claim 42, wherein the implementing
means includes second means for allowing a user to change
the individual time associated with the conofiguration data
related to the second configuration.

44. A method of controlling communication between a
management system, having a user interface, and a plurality
of field devices, each having a device description associated
therewith, the method comprising the steps of:

providing a generalized interfacing routine which, for any

particular one of a plurality of different groups of
logically related items of the device data performs the
steps of;

10

15

20

25

30

30

retrieving the items of device data associated with the
particular one of the groups of logically related items
of device data as stored in the plurality of field
devices and the device descriptions,

displaying the retrieved items of device data associated
with the particular one of the groups via the user
interface in a predefined format,

recognizing when one of the items of device data stored
in one of the plurality of field devices changes, and

indicating, via the user interface, the change to the one
of the items of device data when the one of the items
of device data corresponds to one of the retrieved
items of device data associated with the particular
one of the groups; and

using the generalized interfacing routine to perform com-
munication for a multiplicity of the plurality of differ-
ent groups of logically related items of device data.

45. The method of claim 44, including the steps of storing
a subset of items of one of the groups of logically related
items of device data in a database associated with the
management system, communicating with the database to
retrieve one of the subset of items of device data stored in
the database as one item of the retrieved items of device
data, recognizing when the one of the subset of items of
device data stored in the database changes and indicating,
via the user interface, the change to the one of the subset of
items of device data stored in the database.

46. The method of claim 45, further including the step of
changing a particular one of the items of device data stored
in the field device or the database corresponding to a
particular one of the retrieved group of items of device data
in response to user input.

* % %k k%

